We Have A Great Projects And Better To Come , Please Give Us A Check Arduino Projects collection, easy to follow tutorials. Ideas for your next arduino projects. All projects included diagram, schematic, source code
// ArduinoISP version 04m3 // Copyright (c) 2008-2011 Randall Bohn // If you require a license, see // http://www.opensource.org/licenses/bsd-license.php // // This sketch turns the Arduino into a AVRISP // using the following arduino pins: // // pin name: not-mega: mega(1280 and 2560) // slave reset: 10: 53 // MOSI: 11: 51 // MISO: 12: 50 // SCK: 13: 52 // // CLOCK_1MHZ 3: .kbv // // Put an LED (with resistor) on the following pins: // 9: Heartbeat - shows the programmer is running // 8: Error - Lights up if something goes wrong (use red if that makes sense) // 7: Programming - In communication with the slave // // 23 July 2011 Randall Bohn // -Address Arduino issue 509 :: Portability of ArduinoISP // http://code.google.com/p/arduino/issues/detail?id=509 // // October 2010 by Randall Bohn // - Write to EEPROM > 256 bytes // - Better use of LEDs: // -- Flash LED_PMODE on each flash commit // -- Flash LED_PMODE while writing EEPROM (both give visual feedback of writing progress) // - Light LED_ERR whenever we hit a STK_NOSYNC. Turn it off when back in sync. // - Use pins_arduino.h (should also work on Arduino Mega) // // October 2009 by David A. Mellis // - Added support for the read signature command // // February 2009 by Randall Bohn // - Added support for writing to EEPROM (what took so long?) // Windows users should consider WinAVR's avrdude instead of the // avrdude included with Arduino software. // // January 2008 by Randall Bohn // - Thanks to Amplificar for helping me with the STK500 protocol // - The AVRISP/STK500 (mk I) protocol is used in the arduino bootloader // - The SPI functions herein were developed for the AVR910_ARD programmer // - More information at http://code.google.com/p/mega-isp #include "pins_arduino.h" #define RESET SS #define LED_HB 9 #define LED_ERR 8 #define LED_PMODE 7 #define PROG_FLICKER true #define HWVER 2 #define SWMAJ 1 #define SWMIN 18 // STK Definitions #define STK_OK 0x10 #define STK_FAILED 0x11 #define STK_UNKNOWN 0x12 #define STK_INSYNC 0x14 #define STK_NOSYNC 0x15 #define CRC_EOP 0x20 //ok it is a space... void pulse(int pin, int times); void setup() { Serial.begin(19200); pinMode(LED_PMODE, OUTPUT); pulse(LED_PMODE, 2); pinMode(LED_ERR, OUTPUT); pulse(LED_ERR, 2); pinMode(LED_HB, OUTPUT); pulse(LED_HB, 2); // .kbv these next statements provide a 1MHz clock signal DDRD |= (1<<3); // make o/p OCR2A = F_CPU/2/1000000 - 1; // CTC toggle @ 1MHz OCR2B = OCR2A; // match B TCCR2A = (1<<COM2B0)|(1<<WGM21); // Toggle OC2B in CTC mode TCCR2B = (1 << CS20); // run timer2 at div1 } int error=0; int pmode=0; // address for reading and writing, set by 'U' command int here; uint8_t buff[256]; // global block storage #define beget16(addr) (*addr * 256 + *(addr+1) ) typedef struct param { uint8_t devicecode; uint8_t revision; uint8_t progtype; uint8_t parmode; uint8_t polling; uint8_t selftimed; uint8_t lockbytes; uint8_t fusebytes; int flashpoll; int eeprompoll; int pagesize; int eepromsize; int flashsize; } parameter; parameter param; // this provides a heartbeat on pin 9, so you can tell the software is running. uint8_t hbval=128; int8_t hbdelta=8; void heartbeat() { if (hbval > 192) hbdelta = -hbdelta; if (hbval < 32) hbdelta = -hbdelta; hbval += hbdelta; analogWrite(LED_HB, hbval); delay(20); } void loop(void) { // is pmode active? if (pmode) digitalWrite(LED_PMODE, HIGH); else digitalWrite(LED_PMODE, LOW); // is there an error? if (error) digitalWrite(LED_ERR, HIGH); else digitalWrite(LED_ERR, LOW); // light the heartbeat LED heartbeat(); if (Serial.available()) { avrisp(); } } uint8_t getch() { while(!Serial.available()); return Serial.read(); } void fill(int n) { for (int x = 0; x < n; x++) { buff[x] = getch(); } } #define PTIME 30 void pulse(int pin, int times) { do { digitalWrite(pin, HIGH); delay(PTIME); digitalWrite(pin, LOW); delay(PTIME); } while (times--); } void prog_lamp(int state) { if (PROG_FLICKER) digitalWrite(LED_PMODE, state); } void spi_init() { uint8_t x; SPCR = 0x53; x=SPSR; x=SPDR; } void spi_wait() { do { } while (!(SPSR & (1 << SPIF))); } uint8_t spi_send(uint8_t b) { uint8_t reply; SPDR=b; spi_wait(); reply = SPDR; return reply; } uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { uint8_t n; spi_send(a); n=spi_send(b); //if (n != a) error = -1; n=spi_send(c); return spi_send(d); } void empty_reply() { if (CRC_EOP == getch()) { Serial.print((char)STK_INSYNC); Serial.print((char)STK_OK); } else { error++; Serial.print((char)STK_NOSYNC); } } void breply(uint8_t b) { if (CRC_EOP == getch()) { Serial.print((char)STK_INSYNC); Serial.print((char)b); Serial.print((char)STK_OK); } else { error++; Serial.print((char)STK_NOSYNC); } } void get_version(uint8_t c) { switch(c) { case 0x80: breply(HWVER); break; case 0x81: breply(SWMAJ); break; case 0x82: breply(SWMIN); break; case 0x93: breply('S'); // serial programmer break; default: breply(0); } } void set_parameters() { // call this after reading paramter packet into buff[] param.devicecode = buff[0]; param.revision = buff[1]; param.progtype = buff[2]; param.parmode = buff[3]; param.polling = buff[4]; param.selftimed = buff[5]; param.lockbytes = buff[6]; param.fusebytes = buff[7]; param.flashpoll = buff[8]; // ignore buff[9] (= buff[8]) // following are 16 bits (big endian) param.eeprompoll = beget16(&buff[10]); param.pagesize = beget16(&buff[12]); param.eepromsize = beget16(&buff[14]); // 32 bits flashsize (big endian) param.flashsize = buff[16] * 0x01000000 + buff[17] * 0x00010000 + buff[18] * 0x00000100 + buff[19]; } void start_pmode() { spi_init(); // following delays may not work on all targets... pinMode(RESET, OUTPUT); digitalWrite(RESET, HIGH); pinMode(SCK, OUTPUT); digitalWrite(SCK, LOW); delay(50); digitalWrite(RESET, LOW); delay(50); pinMode(MISO, INPUT); pinMode(MOSI, OUTPUT); spi_transaction(0xAC, 0x53, 0x00, 0x00); pmode = 1; } void end_pmode() { pinMode(MISO, INPUT); pinMode(MOSI, INPUT); pinMode(SCK, INPUT); pinMode(RESET, INPUT); pmode = 0; } void universal() { int w; uint8_t ch; fill(4); ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]); breply(ch); } void flash(uint8_t hilo, int addr, uint8_t data) { spi_transaction(0x40+8*hilo, addr>>8 & 0xFF, addr & 0xFF, data); } void commit(int addr) { if (PROG_FLICKER) prog_lamp(LOW); spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0); if (PROG_FLICKER) { delay(PTIME); prog_lamp(HIGH); } } //#define _current_page(x) (here & 0xFFFFE0) int current_page(int addr) { if (param.pagesize == 32) return here & 0xFFFFFFF0; if (param.pagesize == 64) return here & 0xFFFFFFE0; if (param.pagesize == 128) return here & 0xFFFFFFC0; if (param.pagesize == 256) return here & 0xFFFFFF80; return here; } void write_flash(int length) { fill(length); if (CRC_EOP == getch()) { Serial.print((char) STK_INSYNC); Serial.print((char) write_flash_pages(length)); } else { error++; Serial.print((char) STK_NOSYNC); } } uint8_t write_flash_pages(int length) { int x = 0; int page = current_page(here); while (x < length) { if (page != current_page(here)) { commit(page); page = current_page(here); } flash(LOW, here, buff[x++]); flash(HIGH, here, buff[x++]); here++; } commit(page); return STK_OK; } #define EECHUNK (32) uint8_t write_eeprom(int length) { // here is a word address, get the byte address int start = here * 2; int remaining = length; if (length > param.eepromsize) { error++; return STK_FAILED; } while (remaining > EECHUNK) { write_eeprom_chunk(start, EECHUNK); start += EECHUNK; remaining -= EECHUNK; } write_eeprom_chunk(start, remaining); return STK_OK; } // write (length) bytes, (start) is a byte address uint8_t write_eeprom_chunk(int start, int length) { // this writes byte-by-byte, // page writing may be faster (4 bytes at a time) fill(length); prog_lamp(LOW); for (int x = 0; x < length; x++) { int addr = start+x; spi_transaction(0xC0, (addr>>8) & 0xFF, addr & 0xFF, buff[x]); delay(45); } prog_lamp(HIGH); return STK_OK; } void program_page() { char result = (char) STK_FAILED; int length = 256 * getch(); length += getch(); char memtype = getch(); // flash memory @here, (length) bytes if (memtype == 'F') { write_flash(length); return; } if (memtype == 'E') { result = (char)write_eeprom(length); if (CRC_EOP == getch()) { Serial.print((char) STK_INSYNC); Serial.print(result); } else { error++; Serial.print((char) STK_NOSYNC); } return; } Serial.print((char)STK_FAILED); return; } uint8_t flash_read(uint8_t hilo, int addr) { return spi_transaction(0x20 + hilo * 8, (addr >> 8) & 0xFF, addr & 0xFF, 0); } char flash_read_page(int length) { for (int x = 0; x < length; x+=2) { uint8_t low = flash_read(LOW, here); Serial.print((char) low); uint8_t high = flash_read(HIGH, here); Serial.print((char) high); here++; } return STK_OK; } char eeprom_read_page(int length) { // here again we have a word address int start = here * 2; for (int x = 0; x < length; x++) { int addr = start + x; uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF); Serial.print((char) ee); } return STK_OK; } void read_page() { char result = (char)STK_FAILED; int length = 256 * getch(); length += getch(); char memtype = getch(); if (CRC_EOP != getch()) { error++; Serial.print((char) STK_NOSYNC); return; } Serial.print((char) STK_INSYNC); if (memtype == 'F') result = flash_read_page(length); if (memtype == 'E') result = eeprom_read_page(length); Serial.print(result); return; } void read_signature() { if (CRC_EOP != getch()) { error++; Serial.print((char) STK_NOSYNC); return; } Serial.print((char) STK_INSYNC); uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00); Serial.print((char) high); uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00); Serial.print((char) middle); uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00); Serial.print((char) low); Serial.print((char) STK_OK); } ////////////////////////////////////////// ////////////////////////////////////////// //////////////////////////////////// //////////////////////////////////// int avrisp() { uint8_t data, low, high; uint8_t ch = getch(); switch (ch) { case '0': // signon error = 0; empty_reply(); break; case '1': if (getch() == CRC_EOP) { Serial.print((char) STK_INSYNC); Serial.print("AVR ISP"); Serial.print((char) STK_OK); } break; case 'A': get_version(getch()); break; case 'B': fill(20); set_parameters(); empty_reply(); break; case 'E': // extended parameters - ignore for now fill(5); empty_reply(); break; case 'P': start_pmode(); empty_reply(); break; case 'U': // set address (word) here = getch(); here += 256 * getch(); empty_reply(); break; case 0x60: //STK_PROG_FLASH low = getch(); high = getch(); empty_reply(); break; case 0x61: //STK_PROG_DATA data = getch(); empty_reply(); break; case 0x64: //STK_PROG_PAGE program_page(); break; case 0x74: //STK_READ_PAGE 't' read_page(); break; case 'V': //0x56 universal(); break; case 'Q': //0x51 error=0; end_pmode(); empty_reply(); break; case 0x75: //STK_READ_SIGN 'u' read_signature(); break; // expecting a command, not CRC_EOP // this is how we can get back in sync case CRC_EOP: error++; Serial.print((char) STK_NOSYNC); break; // anything else we will return STK_UNKNOWN default: error++; if (CRC_EOP == getch()) Serial.print((char)STK_UNKNOWN); else Serial.print((char)STK_NOSYNC); } }